Es posible definir propiedades utilizando expresiones matemáticas. En la interfaz gráfica de usuario, los cuadros de giro o campos de entrada que están vinculados a las propiedades contienen un icono azul . Haciendo clic en el icono o escribiendo el signo igual = aparece el editor de expresiones para esa propiedad en particular.
Es una expresión matemática que usa la notación de los operadores, funciones y constantes predefinidas matemáticas estándar como se describe a continuación. Además, la expresión puede hacer referencia a otras propiedades de objetos, y también utilizar condicionales. Los números en una expresión pueden tener una unidad opcional adjunta.
Los números pueden usar ya sea una coma ,
o un punto decimal .
para separar los dígitos enteros de los decimales. Cuando se usa el marcador decimal, debe ser seguido por al menos un dígito. Por lo tanto, las expresiones 1.+2.
y 1,+2,
son inválidas, pero 1.0+2.0
y 1,0+2,0
son válidas.
Los operadores y las funciones son conscientes de la unidad y requieren combinaciones válidas de unidades, si se suministran. Por ejemplo, 2mm+4mm
es una expresión válida, mientras que 2mm+4
no lo es. Esto también se aplica a las referencias a propiedades de objetos que tienen unidades, como las propiedades de longitud. Por lo tanto, Pad001.Length + 1
es inválido ya que agrega un número puro a una propiedad con unidades de longitud, se requiere Pad001.Length + 1mm
.
Algunos errores relacionados con las unidades pueden parecer poco intuitivos, ya que las expresiones se rechazan o producen resultados que no coinciden con las unidades de la propiedad que se establece. Aquí hay unos ejemplos:
1/2mm
no se interpreta como medio milímetro sino como 1/(2mm)
, lo que da como resultado: 0.5 mm^-1
.
sqrt(2)mm
no es válido porque la llamada a la función no es un número. Esto debe ingresarse como sqrt(2) * 1mm
.
Múltiples argumentos a una función pueden estar separados por un punto y coma ;
o una coma seguida por un espacio ,
. En el último caso, la coma se convierte a un punto y coma después de la entrada. Cuando se usa un punto y coma, no es necesario un espacio final.
Los argumentos pueden incluir referencias a las celdas en una hoja de cálculo. Una referencia de celda consiste en la letra mayúscula de fila de la celda seguida de su número de columna, por ejemplo A1
. También se puede hacer referencia a una celda utilizando el alias de la celda, por ejemplo, Spreadsheet.MyPartWidth
.
Como ya se mostró arribam puede hacer referencia a un objeto por su Datos Name. Pero también puedes usar su Datos Label. En el caso de un Datos Label, debe estar encerrado en doble símbolos <<
y >>
, como <<Label>>
.
Puede referenciar cualquier propiedad de un objeto. Por ejemplo, para referenciar la altura de un Cilindro puede usar Cylinder.Height
o <<Label_of_cylinder>>.Height
.
Para más información de como referenciar objetos, vea Referencia a los datos CAD.
Las siguientes constantes están soportadas.
Constant | Description |
---|---|
e | Número de Euler |
pi | Pi |
Los siguientes operadores son soportados.
Operator | Description |
---|---|
+ | Suma |
- | Resta |
* | Multiplicación |
/ | Division de punto flotante |
% | Residuo |
^ | Potenciación |
Las siguientes funciones matemáticas son soportadas:
Las Funciones trigonométricas utilizan el grado sexagesimal como unidad predeterminada. Para radianes, agregue rad
después del primer valor de una expresión. Entonces, por ejemplo, cos(45)
es lo mismo que cos(pi rad / 4)
. Las expresiones en grados pueden usar deg
o °
, por ejemplo, 360deg - atan2(3; 4)
o 360° - atan2(3; 4)
. Si una expresión no tiene unidades y debe convertirse a grados o radianes para garantizar la compatibilidad, multiplíquela por 1deg
, 1°
o 1rad
como apropiado, por ejemplo, (360 - X) * 1deg
; (360 - X) * 1°
; (0,5 + pi / 2) * 1rad
.
Function | Description | Input range |
---|---|---|
acos(x)
|
Arc cosine | -1 <= x <= 1 |
asin(x)
|
Arc sine | -1 <= x <= 1 |
atan(x)
|
Arc tangent, return value in the range -90° < value < 90° | all |
atan2(y; x)
|
Arc tangent of y/x accounting for quadrant, return value in the range -180° < value <= 180° | all, the invalid input x = y = 0 returns 0 |
cos(x)
|
Cosine | all |
cosh(x)
|
Hyperbolic cosine | all |
sin(x)
|
Sine | all |
sinh(x)
|
Hyperbolic sine | all |
tan(x)
|
Tangent | all, except x = n*90 with n = odd integer |
tanh(x)
|
Hyperbolic tangent | all |
hypot(x; y)
|
Pythagorean addition (hypotenuse), e.g. hypot(4; 3) = 5 | x and y >= 0 |
cath(x; y)
|
Given hypotenuse, and one side, returns other side of triangle, e.g. cath(5; 3) = 4 | x >= y >= 0 |
Function | Description | Input range |
---|---|---|
exp(x)
|
Exponential function | all |
log(x)
|
Natural logarithm | x > 0 |
log10(x)
|
Common logarithm | x > 0 |
pow(x; y)
|
Exponentiation | all |
sqrt(x)
|
Square root | x >= 0 |
cbrt(x) introduced in version 0.21
|
Cubic root | all |
Function | Description | Input range |
---|---|---|
abs(x)
|
Absolute value | all |
ceil(x)
|
Ceiling function, smallest integer value greater than or equal to x | all |
floor(x)
|
Floor function, largest integer value less than or equal to x | all |
mod(x; y)
|
Remainder after dividing x by y, sign of result is that of the dividend. | all, except y = 0 |
round(x)
|
Rounding to the nearest integer | all |
trunc(x)
|
Truncation to the nearest integer in the direction of zero | all |
Aggregate functions take one or more arguments.
Individual arguments to aggregate functions may consist of ranges of cells. A range of cells is expressed as two cell references separated by a colon :
, for example average(B1:B8)
or sum(A1:A4; B1:B4)
.
The cell references may also use cell aliases, for example average(StartTemp:EndTemp)
.
Las siguientes funciones agregadas son soportadas:
Function | Description | Input range |
---|---|---|
average(a; b; c; ...)
|
Average value of the arguments, same as sum(a; b; c; ...) / count(a; b; c; ...) | all |
count(a; b; c; ...)
|
Count of the arguments, typically used for cell ranges | all |
max(a; b; c; ...)
|
Maximum value of the arguments | all |
min(a; b; c; ...)
|
Minimum value of the arguments | all |
stddev(a; b; c; ...)
|
Standard deviation of the values of the arguments | all |
sum(a; b; c; ...)
|
Sum of the values of the arguments, typically used for cell ranges | all |
Las cadenas se identifican en las expresiones rodeándolas con comillas angulares dobles de apertura/cierre (al igual que las etiquetas).
En el siguiente ejemplo, "TEXTO" se reconoce como una cadena: <<TEXTO>>
Las cadenas se pueden concatenar usando el signo '+'.
El siguiente ejemplo <<MI>> + <<TEXTO>>
se concatenará con "MITEXTO".
Los valores numéricos se pueden convertir en cadenas con la función str
:
str(Box.Length.Value)
El formato de cadena se admite utilizando el estilo (antiguo) % de Python.
Todos los especificadores % tal como se definen en la documentación de Python.
Como ejemplo, supongamos que tiene un cubo predeterminado de 10 mm de lado llamado 'Box' (nombramiento predeterminado de FreeCAD), la siguiente expresión <<Longitud del cubo: %s>> % Box.Length
se expandirá a "Longitud del cubo: 10.0 mm"
Para más de un especificador % utilice la siguiente sintaxis: <<La longitud del cubo es %s y el ancho es %s>> % tuple(Box.Length; Box.Width)
. O use concatenación: <<La longitud del cubo es %s>> % Box.Length + << y el ancho es %s>> % Box.Width
. Ambos se expandirán a "La longitud del cubo es de 10.0 mm y el ancho es de 10.0 mm".
Está disponible un archivo de muestra de FreeCAD que utiliza formato de cadena en el foro
Los siguientes objetos se pueden crear en expresiones utilizando las siguientes funciones:
Type | Function | Description |
---|---|---|
Tuple
|
tuple(a; b; ...)
|
Example: tuple(2; 1; 2)
|
List
|
list(a; b; ...)
|
Example: list(2; 1; 2)
|
Vector
|
vector(x; y; z)
|
Create a vector using three unit-less or Length unit values.
Example: |
create(<<vector>>; x; y; z)
| ||
Matrix
|
matrix( a11; a12; a13; a14; a21; a22; a23; a24; a31; a32; a33; a34; a41; a42; a43; a44 ) |
Create a 4x4 matrix in row-major order:
Se puede proporcionar un mínimo de 1 argumento, como Example: |
create(<<matrix>>; a11; a12; ...; a44)
| ||
Rotation
|
rotation(axis; angle)
|
Create a Rotation by specifying its axis (Vector ) and angle (Angle unit or unit-less), or three Euler angles α , β , γ .
Examples:
|
rotation(α; β; γ)
| ||
create(<<rotation>>; axis; angle)
| ||
create(<<rotation>>; α; β; γ)
| ||
Placement
|
placement(base; rotation)
|
Create a Placement with various parameters, including:
Examples:
|
placement(base; rotation; center)
| ||
placement(base; axis; angle)
| ||
placement(matrix)
| ||
create(<<placement>>; ...)
|
Funciones: introduced in version 0.22.
Function / Operator | Description |
---|---|
v1 + v2
|
Add two vectors. |
v1 - v2
|
Subtract two vectors. |
v * s
|
Uniformly scale a vector by s .
|
vangle(v1; v2)
|
Angle between two vectors in degrees. |
vcross(v1; v2)
|
Cross product of two vectors . |
v1 * v2
|
Dot product of two vectors . |
vdot(v1; v2)
| |
vlinedist(v1; v2; v3)
|
Distance between vector v1 and a line through v2 in direction v3 .
|
vlinesegdist(v1; v2; v3)
|
Distance between vector v1 and the closest point on a line segment from v2 to v3 .
|
vlineproj(v1; v2; v3)
|
Project vector v1 on a line through v2 in direction v3 .
|
vnormalize(v)
|
Normalize a vector to a unit vector. |
vplanedist(v1)
|
Distance between vector v1 and a plane defined by a point v2 and a normal v3 .
|
vplaneproj(v1)
|
Project vector v1 on a plane defined by a point v2 and a normal v3 .
|
vscale(v; sx; sy; sz)
|
Non-uniformly scale a vector by sx in the X direction, sy in the Y direction, and sz in the Z direction.
|
vscalex(v; sx)
| |
vscaley(v; sy)
| |
vscalez(v; sz)
|
Rotation
and Placement
can each be represented by a Matrix
. The following functions all take in a Matrix
, Rotation
, or Placement
as their first parameter denoted in the table below by m
. The type of the returned object is the same as the object supplied in the first argument except when using mtranslate
on a Rotation
, in which case a Placement
will be returned.
Function | Description |
---|---|
minvert(m)
|
Calculate the Inverse matrix. |
mrotate(m; rotation)
|
Rotate by either:
|
mrotate(m; axis; angle)
| |
mrotate(m; α; β; γ)
| |
mrotatex(m; angle)
|
Rotate around the X axis. |
mrotatey(m; angle)
|
Rotate around the Y axis. |
mrotatez(m; angle)
|
Rotate around the Z axis. |
mtranslate(m; vector)
|
Translate by a vector (Vector ) or X, Y, Z values. If a Rotation is translated, the returned object is a Placement .
|
mtranslate(m; x; y; z)
| |
mscale(m; vector)
|
Scale by a vector (Vector ) or X, Y, Z values.
|
mscale(m; x; y; z)
|
Conditional expressions are of the form condition ? resultTrue : resultFalse
. The condition is defined as an expression that evaluates to either 0
(false) or non-zero (true).
Note that to use a boolean property as the condition this syntax must be used: VarSet.MyBool == 1 ? 10 mm : 15 mm
.
The following relational operators are defined:
Unit | Description |
---|---|
== | equal to |
!= | not equal to |
> | greater than |
< | less than |
>= | greater than or equal to |
<= | less than or equal to |
Las unidades se pueden utilizar directamente en expresiones. El analizador los conecta con el valor anterior. Entonces 2mm
o 2 mm
es válido mientras que mm
no es válido porque no hay un valor anterior.
All values must have a unit. Therefore you must in general use a unit for values in spreadsheets.
In some cases it works even without a unit, for example if you have e.g. in spreadsheet cell B1 just the number 1.5
and refer to it for a pad height. This only works because the pad height predefines the unit mm
that is used if no unit is given. It will nevertheless fail if you use for the pad height e.g. Sketch1.Constraints.Width - Spreadsheet.B1
because Sketch1.Constraints.Width
has a unit and Spreadsheet.B1
has not.
Se pueden ingresar directamente unidades con exponentes. Entonces, por ejemplo, mm^3
se reconocerá como mm³ y m^3
se reconocerá como m³.
Si tienes una variable cuyo nombre es el de una unidad debes poner la variable entre << >>
para evitar que sea reconocida como una unidad. Por ejemplo, si tiene la dimensión Sketch.Constraints.A
, se reconocerá como la unidad amperio. Por lo tanto debes escribirlo en la expresión como Sketch.Constraints.<<A>>
.
El analizador de expresiones reconoce las siguientes unidades:
Unit | Description |
---|---|
mmol | Millimole |
mol | Mole |
Unit | Description |
---|---|
° | Degree; alternative to the unit deg |
deg | Degree; alternative to the unit ° |
rad | Radian |
gon | Gradian |
M | Minute of arc; alternative to the unit ′ |
′ | Minute of arc; this is the prime symbol (U+2032); alternative to the unit M |
S | Second of arc; DOES NOT WORK; alternative to the unit ″ |
″ | Second of arc; this is the double prime symbol (U+2033); alternative to the unit S |
Unit | Description |
---|---|
mA | Milliampere |
A | Ampere |
kA | Kiloampere |
MA | Megaampere |
Unit | Description |
---|---|
pF | Picofarad |
nF | Nanofarad |
uF | Microfarad; alternative to the unit µF |
µF | Microfarad; alternative to the unit uF |
mF | Millifarad |
F | Farad; 1 F = 1 s^4·A^2/m^2/kg |
Unit | Description |
---|---|
C | Coulomb; 1 C = 1 A*s |
Unit | Description |
---|---|
uS | Microsiemens; alternative to the unit µS |
µS | Microsiemens; alternative to the unit uS |
mS | Millisiemens |
S | Siemens; 1 S = 1 s^3·A^2/kg/m^2 |
kS | KiloSiemens |
MS | MegaSiemens |
Unit | Description |
---|---|
nH | Nanohenry |
uH | Microhenry; alternative to the unit µH |
µH | Microhenry; alternative to the unit uH |
mH | Millihenry |
H | Henry; 1 H = 1 kg·m^2/s^2/A^2 |
Unit | Description |
---|---|
mV | Millivolt |
V | Volt |
kV | Kilovolt |
Unit | Description |
---|---|
Ohm | Ohm; 1 Ohm = 1 kg·m^2/s^3/A^2 |
kOhm | Kiloohm |
MOhm | Megaohm |
Unit | Description |
---|---|
mJ | Millijoule |
J | Joule |
kJ | Kilojoule |
eV | Electronvolt; 1 eV = 1.602176634e-19 J |
keV | Kiloelectronvolt |
MeV | Megaelectronvolt |
kWh | Kilowatt hour; 1 kWh = 3.6e6 J |
Ws | Watt second; alternative to the unit Joule |
VAs | Volt-ampere-second; alternative to the unit Joule |
CV | Coulomb-volt; alternative to the unit Joule |
cal | Calorie; 1 cal = 4.184 J |
kcal | Kilocalorie |
Unit | Description |
---|---|
mN | Millinewton |
N | Newton |
kN | Kilonewton |
MN | Meganewton |
lbf | Pound of force |
Unit | Description |
---|---|
nm | Nanometer |
um | Micrometer; alternative to the unit µm |
µm | Micrometer; alternative to the unit um |
mm | Millimeter |
cm | Centimeter |
dm | Decimeter |
m | Meter |
km | Kilometer |
mil | Thousandth of an inch; alternative to the unit thou |
thou | Thousandth of an inch; alternative to the unit mil |
in | Inch; alternative to the unit " |
" | Inch; alternative to the unit in |
ft | Foot; alternative to the unit ' |
' | Foot; alternative to the unit ft |
yd | Yard |
mi | Mile |
Unit | Description |
---|---|
cd | Candela |
Unit | Description |
---|---|
Wb | Weber; 1 Wb = 1 kg*m^2/s^2/A |
Unit | Description |
---|---|
G | Gauss; 1 G = 1 e-4 T |
T | Tesla; 1 T = 1 kg/s^2/A |
Unit | Description |
---|---|
ug | Microgram; alternative to the unit µg |
µg | Microgram; alternative to the unit ug |
mg | Milligram |
g | Gram |
kg | Kilogram |
t | Tonne |
oz | Ounce |
lb | Pound; alternative to the unit lbm |
lbm | Pound; alternative to the unit lb |
st | Stone |
cwt | Hundredweight |
Unit | Description |
---|---|
W | Watt |
kW | Kilowatt |
Unit | Description |
---|---|
Pa | Pascal |
kPa | Kilopascal |
MPa | Megapascal |
GPa | Gigapascal |
uTorr | Microtorr; alternative to the unit µTorr |
µTorr | Microtorr; alternative to the unit uTorr |
mTorr | Millitorr |
Torr | Torr; 1 Torr = 133.32 Pa |
psi | Pound-force per square inch; 1 psi = 6.895 kPa |
ksi | Kilopound-force per square inch |
Unit | Description |
---|---|
uK | Microkelvin; alternative to the unit µK |
µK | Microkelvin; alternative to the unit uK |
mK | Millikelvin |
K | Kelvin |
Unit | Description |
---|---|
s | Second |
min | Minute |
h | Hour |
Hz (1/s) | Hertz |
kHz | Kilohertz, |
MHz | Megahertz |
GHz | Gigahertz |
THz | Terahertz |
Unit | Description |
---|---|
ml | Milliliter |
l | Liter |
cft | Cubicfoot |
Unit | Description |
---|---|
mph | Miles per hour |
sqft | Square foot |
The following commonly used units are not yet supported, for some an alternative is provided:
Unit | Description | Alternative |
---|---|---|
°C | Celsius | [°C] + 273.15 K |
°F | Fahrenheit; | ([°F] + 459.67) × 5/9 |
u | Atomic mass unit; alternative to the unit Da | 1.66053906660e-27 kg |
Da | Dalton; alternative to the unit u | 1.66053906660e-27 kg |
sr | Steradian | not directly |
lm | Lumen | not directly |
lx | Lux | not directly |
px | Pixel | not directly |
The expression feature is very powerful but to achieve this power it has some limitations concerning some characters. To overcome this, FreeCAD offers to use labels and reference them instead of the object names. In labels you can use almost all special characters.
In cases where you cannot use a label, such as the name of a sketch's constraints, you must be aware what characters are not allowed.
For labels there are no invalid characters, however some characters need to be escaped:
Characters | Description |
---|---|
' , \ , "
|
Need to be escaped by adding \ in front of them.
|
For example, the label Sketch\002
must be referenced as <<Sketch\\002>>
.
Names of objects like dimensions, sketches, etc. may not have the characters or character sequences listed below, otherwise the name is invalid:
Characters / Character sequences | Description |
---|---|
+, -, *, /, ^, _, <, >, (, ), {, }, [, ], ., ,, = | Characters that are math operators or part of mathematical constructs |
A, kA, mA, MA, J, K, ' , ft , °, and many more! | Characters and character sequences that are units (see the Units paragraph) |
#, !, ?, §, $, %, &, :, ;, \, |, ~, ∆, ¿, and many more! | Characters used as placeholder or to trigger special operations |
pi, e | Mathematical constants |
´, `, ' , " | Characters used for accents |
space | A space defines the end of a name and can therefore not be used |
For example, the following name is valid: <<Sketch>>.Constraints.T2üßµ@
. While these are invalid names: <<Sketch>>.Constraints.test\result_2
(\r means "carriage return") or <<Sketch>>.Constraints.mol
(mol is a unit).
Since shorter names (especially if they have only one or two characters) can easily result in invalid names, consider using longer names and/or establishing a suitable naming convention.
See Spreadsheet SetAlias.
It is possible to use data from the model itself in an expression. To reference a property use object_name.property
or <<object_label>>.property
, labels must be enclosed in <<
and >>
. If you want to use labels they must be unique.
All next examples reference the object by its name, but in all cases the object label can also be used.
If the property is a compound of fields, the individual fields can be accessed as object_name.property.field
.
Para referenciar una lista de objetos use object_label.list[list_index]
. Si quiere por ejemplo referenciar una restricción de un croquis use Sketch.Constraints[16]
. Si está en el mismo croquis puede omitir su nombre y solo usar Constraints[16]
.Note que el índice inicia en 0, por lo que la restricción 17 tiene que ser referenciada como Constraints[16]
To reference the object itself use the _self
pseudo property: object_name._self
.
The following table shows some more examples:
CAD data | Call in expression | Result |
---|---|---|
Length of a Part Box | Box.Length
|
Length with units (mm) |
Volume of the Box | Box.Shape.Volume
|
Volume in mm³ without units |
Shape type of the Box | Box.Shape.ShapeType
|
String: Solid |
Label of the Box | Box.Label
|
String: Label |
X-coordinate of center of mass of the Box | Box.Shape.CenterOfMass.x
|
X-coordinate in mm without units |
X-coordinate of the Box placement | Box.Placement.Base.x
|
X-coordinate with units (mm) |
X-component of the rotation axis of the Box placement | Box.Placement.Rotation.Axis.x
|
X-component of the unit vector in mm without units |
Rotation angle of the Box placement | Box.Placement.Rotation.Angle
|
Rotation angle with units (deg) |
Full Box object | Box._self
|
Object of type <Part::PartFeature> |
Value of constraint in a sketch | Constraints.Width
|
Numeric value of the named constraint Width in the sketch, if the expression is used in the sketch itself.
|
Value of constraint in a sketch | MySketch.Constraints.Width
|
Numeric value of the named constraint Width in the sketch, if the expression is used outside of the sketch.
|
Value of a spreadsheet alias | Spreadsheet.Depth
|
Value of the alias Depth in the spreadsheet Spreadsheet
|
Value of a local property | Length
|
Value of the DatosLength property in e.g a Pad object, if the expression is used in e.g DatosLength2 in the same object. |
FreeCAD checks dependencies based on the relationship between document objects, not properties. This means that you cannot provide data to an object and query that same object for results. For example, even though there are no cyclic dependencies when the properties themselves are considered, you may not have an object which gets its dimensions from a spreadsheet and then display the volume of that object in the same spreadsheet. You have to use two spreadsheets, one to drive your model and the other for reporting.
As a workaround it is possible to display a cell range from the second spreadsheet in the first (or vice versa) by creating a cell binding with the Hide dependency of binding option.
Another way to workaround cyclic dependencies is to hide the reference by using the href
or hiddenref
function for individual expressions, for example: href(Box.Length)
.
Please note that both mentioned workarounds should be used with caution, and that they do not work if the properties that are reported depend on dimensions that are driven from the same spreadsheet.
There is no concept of global variables in FreeCAD at the moment. Instead, arbitrary variables can be defined as cells in a spreadsheet using the Spreadsheet workbench, and then be given a name using the alias property for the cell (right-click on cell). Then they can be accessed from any expression just as any other object property.
It is possible (with limitations) to define a Property of an object in your current document (".FCstd" file) by using an Expression to reference a Property of an object contained in a different document (".FCstd" file). For example, a cell in a spreadsheet or the DatosLength of a Part Cube, etc. in one document can be defined by an Expression that references the X Placement value or another Property of an object contained in a different document.
A document's name is used to reference it from other documents. When saving a document the first time, you choose a file name; this is usually different from the initial default "Unnamed1" (or its translated equivalent). To prevent links being lost when the master document is renamed upon saving, it is recommended that you first create the master document, create a spreadsheet inside it, and save it. Subsequently, you can still make changes to the file and its spreadsheet but you should not rename it.
Once the master document with the spreadsheet is created and saved (named), it is safe to create dependent documents. For example, assuming you name the master document master
, the spreadsheet modelConstants
, and give a cell an alias-name Length
, you can then access the value as:
master#modelConstants.Length
Note that the master document must be loaded for the values in the master to be available to the dependent document.
Of course, it's up to you to load the corresponding documents later when you want to change anything.
import FreeCAD as App
doc = App.ActiveDocument
box = doc.addObject("Part::Box", "Box")
cyl = doc.addObject("Part::Cylinder", "Cylinder")
cyl_name = cyl.Name
box.setExpression("Height", f"{cyl_name}.Height / 2")
box.setExpression("Length", f"{cyl_name}.Radius * 2")
box.setExpression("Width", "Length")
doc.recompute()
# Expressions are stored in the ExpressionEngine property:
for prop, exp in box.ExpressionEngine:
val = getattr(box, prop)
print(f"Property: '{prop}' -- Expression: '{exp}' -- Current value: {val}")